Adverse reaction |
ALECENSA (n=152) | crizotinib (n=151) | ||
---|---|---|---|---|
All Grades | Grades 3-4 | All Grades | Grades 3-4 | |
Constipation |
34% | 0% | 33% | 0% |
Fatiguea |
26% | 1.3% | 23% | 0.7% |
Myalgiab |
23% | 1.3% | 4% | 0% |
Edemac |
22% | 0.7% | 34% | 0.7% |
Rashd |
15% | 0.7% | 13% | 0% |
Nausea |
14% | 0.7% | 48% | 3.3% |
Renal Impairmente |
12% | 3.9%g | 0% | 0% |
Diarrhea |
12% | 0% | 45% | 2% |
Bradycardiaf |
11% | 0% | 15% | 0% |
aIncludes fatigue and asthenia.
bIncludes myalgia and musculoskeletal pain.
cIncludes peripheral edema, edema, eyelid edema, localized edema, and face edema.
dIncludes rash, rash maculo-papular, dermatitis acneiform, erythema, generalized rash, rash macular, rash papular, exfoliative rash, and pruritic rash.
eIncludes increased blood creatinine, creatinine renal clearance decreased, glomerular filtration rate decreased, and acute kidney injury.
fIncludes reported cases of bradycardia and sinus bradycardia but is not based on serial ECG assessment.
gIncludes 2 Grade 5 events.
Parameter | ALECENSA (n=152) | crizotinib (n=151) | ||
---|---|---|---|---|
All Grades | Grades 3-4 | All Grades | Grades 3-4 | |
Chemistry | ||||
Hyperbilirubinemia | 54% | 5% | 4.7% | 0% |
Increased AST | 50% | 6% | 56% | 11% |
Increased alkaline phosphatase | 50% | 0% | 44% | 0% |
Increased ALT | 40% | 6% | 62% | 16% |
The most common lab abnormalities occurred early |
||||
Increased creatinine | 38% | 4.1% | 23% | 0.7% |
Increased CPK | 37% | 2.8% | 52% | 1.4% |
Hypocalcemia | 29% | 0% | 61% | 1.4% |
Hyperglycemia | 22% | 2.2% | 19% | 2.3% |
Hyponatremia | 18% | 6% | 20% | 4.1% |
Hypokalemia | 17% | 2% | 12% | 0.7% |
Hypoalbuminemia | 14% | 0% | 57% | 3.4% |
Hyperkalemia | 12% | 1.4% | 16% | 1.4% |
Hypophosphatemia | 9% | 1.4% | 25% | 2.7% |
Increased gamma glutamyl transferase | 7% | 0.7% | 39% | 4.1% |
Hematology | ||||
Anemia | 62% | 7% | 36% | 0.7% |
Lymphopenia | 14% | 1.4% | 34% | 4.1% |
Neutropenia | 14% | 0% | 36% | 7% |
Based on NCI CTCAE v4.03. Excludes patients with no post-baseline lab assessments.
hPatients with missing baseline values were included. For each laboratory abnormality, the number of patients evaluated may vary (n=131 to n=148). Please refer to PI for additional information.
Parameter | ALECENSA (n=152) | crizotinib (n=151) | |
---|---|---|---|
Median duration of exposure | 17.9 months
(range: 0-29.0 months) |
10.7 months
(range: 0-27.0 months) |
|
Grade 5 ARs | 3%i | 5%j | |
Grade ≥3 ARs | 41% | 50% | |
Dose modifications due to ARs | |||
Dose reductions | 16% | 21% | |
Dose interruptions | 19% | 25% | |
Permanent discontinuations | 11% | 13% |
iAll unrelated to treatment.5
jTwo related to treatment.5
Most frequent ARs (≥2%) leading to a dose modification for ALECENSA1,2
kA retrospective cohort study using electronic health record data in 117 adult patients with ALK-positive advanced NSCLC receiving ALK TKIs, with ALECENSA (n=70) or crizotinib (n=47) as the initial ALK TKI therapy.
ALK=anaplastic lymphoma kinase; ALT=alanine transaminase; AR=adverse reaction; AST=aspartate transaminase; CPK=creatinine phosphokinase; ECG=electrocardiogram; mAE=major adverse event; NCI CTCAE=National Cancer Institute Common Terminology Criteria for Adverse Events; TKI=tyrosine kinase inhibitor.
ALECENSA [prescribing information]. South San Francisco, CA: Genentech USA, Inc. 2024.
ALECENSA [prescribing information]. South San Francisco, CA: Genentech USA, Inc. 2024.
Data on file. Genentech, Inc.
Data on file. Genentech, Inc.
Mok T, Camidge DR, Gadgeel SM, et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann Oncol. 2020;31(8):1056-1064. doi:10.1016/j.annonc.2020.04.478
Mok T, Camidge DR, Gadgeel SM, et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann Oncol. 2020;31(8):1056-1064. doi:10.1016/j.annonc.2020.04.478
Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Non-Small Cell Lung Cancer V.4.2025. © National Comprehensive Cancer Network, Inc. 2025. All rights reserved. Accessed May 29, 2025. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use, or application, and disclaims any responsibility for their application or use in any way. See the NCCN Guidelines® for detailed recommendations.
Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Non-Small Cell Lung Cancer V.4.2025. © National Comprehensive Cancer Network, Inc. 2025. All rights reserved. Accessed May 29, 2025. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use, or application, and disclaims any responsibility for their application or use in any way. See the NCCN Guidelines® for detailed recommendations.
Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. N Engl J Med. 2017;377(9):829-838. doi:10.1056/NEJMoa1704795
Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. N Engl J Med. 2017;377(9):829-838. doi:10.1056/NEJMoa1704795
Carnio S, Novello S, Mele T, Levra MG, Scagliotti GV. Extending survival of stage IV non-small cell lung cancer. Semin Oncol. 2014;41(1):69-92. doi:10.1053/j.seminoncol.2013.12.013
Carnio S, Novello S, Mele T, Levra MG, Scagliotti GV. Extending survival of stage IV non-small cell lung cancer. Semin Oncol. 2014;41(1):69-92. doi:10.1053/j.seminoncol.2013.12.013
Wang B, Guo H, Xu H, Yu H, Chen Y, Zhao G. Research progress and challenges in the treatment of central nervous system metastases of non-small cell lung cancer. Cells. 2021;10(10):2620. doi.org/10.3390/cells10102620
Wang B, Guo H, Xu H, Yu H, Chen Y, Zhao G. Research progress and challenges in the treatment of central nervous system metastases of non-small cell lung cancer. Cells. 2021;10(10):2620. doi.org/10.3390/cells10102620
Guérin A, Sasane M, Zhang J, et al. Brain metastases in patients with ALK+ non-small cell lung cancer: clinical symptoms, treatment patterns and economic burden. J Med Econ. 2015;18(4):312-322. doi:10.3111/13696998.2014.1003644
Guérin A, Sasane M, Zhang J, et al. Brain metastases in patients with ALK+ non-small cell lung cancer: clinical symptoms, treatment patterns and economic burden. J Med Econ. 2015;18(4):312-322. doi:10.3111/13696998.2014.1003644
Yoshida T, Oya Y, Tanaka K, et al. Clinical impact of crizotinib on central nervous system progression in ALK-positive non-small lung cancer. Lung Cancer. 2016;97:43-47. doi:10.1016/j.lungcan.2016.04.006
Yoshida T, Oya Y, Tanaka K, et al. Clinical impact of crizotinib on central nervous system progression in ALK-positive non-small lung cancer. Lung Cancer. 2016;97:43-47. doi:10.1016/j.lungcan.2016.04.006
Toyokawa G, Seto T, Takenoyama M, Ichinose Y. Insights into brain metastasis in patients with ALK+ lung cancer: is the brain truly a sanctuary? Cancer Metastasis Rev. 2015;34(4):797-805. doi:10.1007/s10555-015-9592-y
Toyokawa G, Seto T, Takenoyama M, Ichinose Y. Insights into brain metastasis in patients with ALK+ lung cancer: is the brain truly a sanctuary? Cancer Metastasis Rev. 2015;34(4):797-805. doi:10.1007/s10555-015-9592-y
Sakamoto H, Tsukaguchi T, Hiroshima S, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011;19(5):679-690. doi:10.1016/j.ccr.2011.04.004
Sakamoto H, Tsukaguchi T, Hiroshima S, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011;19(5):679-690. doi:10.1016/j.ccr.2011.04.004
Avrillon V, Pérol M. Alectinib for treatment of ALK-positive non-small-cell lung cancer. Future Oncol. 2017;13(4):321-335. doi:10.2217/fon-2016-0386
Avrillon V, Pérol M. Alectinib for treatment of ALK-positive non-small-cell lung cancer. Future Oncol. 2017;13(4):321-335. doi:10.2217/fon-2016-0386
Della Corte CM, Viscardi G, Di Liello R, et al. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer. 2018;17(1):30. doi:10.1186/s12943-018-0776-2
Della Corte CM, Viscardi G, Di Liello R, et al. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer. 2018;17(1):30. doi:10.1186/s12943-018-0776-2
Mahato AK, Sidorova YA. RET receptor tyrosine kinase: role in neurodegeneration, obesity, and cancer. Int J Mol Sci. 2020;21(19):7108. doi:10.3390/ijms21197108
Mahato AK, Sidorova YA. RET receptor tyrosine kinase: role in neurodegeneration, obesity, and cancer. Int J Mol Sci. 2020;21(19):7108. doi:10.3390/ijms21197108
Kodama T, Hasegawa M, Takanashi K, Sakurai Y, Kondoh O, Sakamoto H. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother Pharmacol. 2014;74(5):1023-1028. doi:10.1007/s00280-014-2578-6
Kodama T, Hasegawa M, Takanashi K, Sakurai Y, Kondoh O, Sakamoto H. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother Pharmacol. 2014;74(5):1023-1028. doi:10.1007/s00280-014-2578-6
Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86-98. doi:10.1602/neurorx.2.1.86
Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86-98. doi:10.1602/neurorx.2.1.86
Deeken JF, Löscher W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res. 2007;13(6):1663-1674. doi:10.1158/1078-0432.CCR-06-2854
Deeken JF, Löscher W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res. 2007;13(6):1663-1674. doi:10.1158/1078-0432.CCR-06-2854
Camidge DR, Dziadziuszko R, Peters S, et al. Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK-positive advanced non-small cell lung cancer in the global phase III ALEX study. J Thorac Oncol. 2019;14(7):1233-1243. doi:10.1016/j.jtho.2019.09.004
Camidge DR, Dziadziuszko R, Peters S, et al. Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK-positive advanced non-small cell lung cancer in the global phase III ALEX study. J Thorac Oncol. 2019;14(7):1233-1243. doi:10.1016/j.jtho.2019.09.004
Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. N Engl J Med. 2017;377(protocol):1-384.
Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. N Engl J Med. 2017;377(protocol):1-384.
Gadgeel S, Peters S, Mok T, et al. Alectinib versus crizotinib in treatment-naive anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer: CNS efficacy results from the ALEX study. Ann Oncol. 2018;29(11):2214-2222. doi:10.1093/annonc/mdy405
Gadgeel S, Peters S, Mok T, et al. Alectinib versus crizotinib in treatment-naive anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer: CNS efficacy results from the ALEX study. Ann Oncol. 2018;29(11):2214-2222. doi:10.1093/annonc/mdy405
Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. N Engl J Med. 2017;377(9)(suppl):1-14.
Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. N Engl J Med. 2017;377(9)(suppl):1-14.
Dziadziuszko R, Peters S, Ruf T, et al. Clinical experience and management of adverse events in patients with advanced ALK-positive non-small-cell lung cancer receiving alectinib. ESMO Open. 2022;7(6):100612. doi:10.1016/j.esmoop.2022.100612
Dziadziuszko R, Peters S, Ruf T, et al. Clinical experience and management of adverse events in patients with advanced ALK-positive non-small-cell lung cancer receiving alectinib. ESMO Open. 2022;7(6):100612. doi:10.1016/j.esmoop.2022.100612
Wang M, Slatter S, Sussell J, et al. ALK inhibitor treatment patterns and outcomes in real‑world patients with ALK‑positive non‑small‑cell lung cancer: a retrospective cohort study. Target Oncol. 2023;18(4):571-583. doi:10.1007/s11523-023-00973-7
Wang M, Slatter S, Sussell J, et al. ALK inhibitor treatment patterns and outcomes in real‑world patients with ALK‑positive non‑small‑cell lung cancer: a retrospective cohort study. Target Oncol. 2023;18(4):571-583. doi:10.1007/s11523-023-00973-7
Criteria | ALECENSA dose modification |
---|---|
ALT or AST elevation of >5X ULN with total bilirubin ≤2X ULN | Temporarily withhold until recovery to baseline or to ≤3X ULN, then resume at reduced dose. See dose reduction schedule. |
ALT or AST elevation >3X ULN with total bilirubin elevation >2X ULN in the absence of cholestasis or hemolysis | Permanently discontinue ALECENSA. |
Total bilirubin elevation >3X ULN | Temporarily withhold until recovery to baseline or to ≤1.5X ULN, then resume at reduced dose. See dose reduction schedule. |
Any grade treatment-related ILD/pneumonitis | Permanently discontinue ALECENSA. |
Grade 3 renal impairment | Temporarily withhold until serum creatinine recovers to ≤1.5X ULN, then resume at reduced dose. See dose reduction schedule. |
Grade 4 renal impairment | Permanently discontinue ALECENSA. |
Symptomatic bradycardia | Withhold ALECENSA until recovery to asymptomatic bradycardia or to a heart rate of ≥60 bpm. If contributing concomitant medication is identified and discontinued, or its dose is adjusted, resume ALECENSA at previous dose upon recovery to asymptomatic bradycardia or to a heart rate of ≥60 bpm. If no contributing concomitant medication is identified, or if contributing concomitant medications are not discontinued or dose modified, resume ALECENSA at reduced dose upon recovery to asymptomatic bradycardia or to a heart rate of ≥60 bpm. See dose reduction schedule. |
Bradycardiaa (life-threatening consequences, urgent intervention indicated) | Permanently discontinue ALECENSA if no contributing concomitant medication is identified. If contributing concomitant medication is identified and discontinued, or its dose is adjusted, resume ALECENSA at reduced dose upon recovery to asymptomatic bradycardia or to a heart rate of ≥60 bpm, with frequent monitoring as clinically indicated. Permanently discontinue ALECENSA in case of recurrence. See dose reduction schedule. |
CPK elevation of >5X ULN | Temporarily withhold until recovery to baseline or to ≤2.5X ULN, then resume at same dose. |
CPK elevation >10X ULN or second occurrence of CPK elevation of >5X ULN | Temporarily withhold until recovery to baseline or to ≤2.5X ULN, then resume at reduced dose. See dose reduction schedule. |
Hemolytic anemia | Withhold ALECENSA if hemolytic anemia is suspected. Upon resolution, resume at reduced dose or permanently discontinue. See dose reduction schedule. |
aHeart rate <60 bpm.
ALT=alanine transaminase; AST=aspartate transaminase; bpm=beats per minute; CPK=creatine phosphokinase; ILD=interstitial lung disease; ULN=upper limit of normal.
The link you have selected will take you away from this site to one that is not owned or controlled by Genentech, Inc. Genentech, Inc. makes no representation as to the accuracy of the information contained on sites we do not own or control. Genentech does not recommend and does not endorse the content on any third-party websites. Your use of third-party websites is at your own risk and subject to the terms and conditions of use for such sites.